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Abstract: This paper presents an operational conceptual model for choosing 

between gravity-fed and pump-driven rural water distribution under 

affordability limits and constrained operator capacity. Decisions in rural 

WASH planning are often made with incomplete data and fragmented 

governance, and practical frameworks that map context to testable decision 

propositions remain limited. The proposed framework defines the unit of 

analysis as a candidate scheme within a community context and specifies 

constructs for life cycle cost (LCC), decision-threshold stability, and service 

continuity, supported by a coding rubric and explicit causal mechanisms. 

Evaluability is operationalized using grouped and external holdouts, 4 

baseline comparators, 3 primary indicators, and BCa 95% confidence 

intervals from paired bootstrap with 2000 resamples, alongside stress-test 

ranges that include demand from 30-650 GPCD and inlet turbidity up to 

1863 NTU. Empirical performance outcomes are not reported here; the 

contribution is a transparent decision model with boundary conditions and 

misuse guardrails intended to support rural water engineers and planners 

selecting distribution modalities in resource-constrained programs. 
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Introduction 

Rural WASH planning often requires choosing between gravity-fed and pump-

driven distribution under affordability limits and constrained operator capacity. 

Energy insecurity can make pump-dependent service brittle, as disruptions in 

scheduled delivery have been documented in rural settings (Machimana et al., 

2024). Fig. (1) situates the decision setting around pumps, storage tanks, piping, 

telemetry, and a checklist cue. The present study targets an operational conceptual 

model that links context to these intervention choices. 

Research design transparency is addressed by combining theory synthesis with 

an explicit validation plan: constructs are defined for rubric-based coding, 

propositions are stated as observable implications for service outcomes, and 

evaluation rules emphasize grouped and external holdouts. The benchmarking 

protocol aligns with prior work that highlights energy-water trade-offs and 

infrastructure siting constraints (Karambelkar et al., 2025; Machimana et al., 

2024). Key limitations include incomplete representation of local idiosyncrasies 

and potential misapplication outside stated boundary conditions. 

 

 

Figure 1. Rural WASH decision context scene 
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Background and Related Foundations 

Rural water distribution choices between gravity-fed and pump-driven schemes 

are typically constrained by scarcity dynamics and operational intermittency. 

Monthly sub-basin scarcity assessments quantify where and when demand exceeds 

blue-water availability, motivating context-specific service targets (Deng et al., 

2025). Related optimization work on intermittent supply operations frames the 

trade-offs among reliability, resource limits, and objectives, informing the present 

benchmark protocol (Ayyash et al., 2024). These foundations justify treating 

context and operating constraints as first-order determinants of feasible design 

options. 

Conceptually, the proposed framework draws on integrated accounts that link 

human behavior, leadership, economic incentives, and technology in water crisis 

management (Yasmeen et al., 2024), alongside Water-Energy-Food nexus 

modeling that treats energy availability and cooperation as coupled drivers of water 

service options (Lodge et al., 2024). Baselines are specified to anchor claims in 

familiar decision rules, including a decision tree surrogate, regularized regression 

surrogate, capex-only comparison, and a pump-availability rule-of-thumb. 

Evidence corpus integrity remains bounded by what was assembled; explicit 

inclusion and exclusion rules are not reported here. 

Literature Review 

Prior hydrological modeling provides context for resource availability and 

demand that can condition rural distribution choices. WaterGAP v2.2e formalizes 

naturalized water resource and use accounting with calibration against extensive 

streamflow observations, offering reproducible inputs for scenario-based planning 

(Schmied et al., 2024). Agent-augmented large-scale models further illustrate how 

behavioral adaptation can shift shortage outcomes, highlighting the importance of 

endogenous responses when evaluating intervention feasibility (Yoon et al., 2024). 

These strands motivate a context-linked scheme selection model rather than a 

purely hydraulic comparison. 

System dynamics studies offer complementary structure for mapping policy 

levers to service outcomes under uncertainty. Basin-scale analyses have tested 

demand-side strategies across climate and socio-economic scenarios and reported 

model accuracy in terms of mean absolute error (MAE), while noting that 

economic feasibility can alter conclusions (Baharanchi et al., 2024). Disaggregated 

water-food-energy simulations extend this logic via Monte Carlo sensitivity to 
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compare integrated policy bundles (Zahedi et al., 2024). The benchmark protocol 

therefore follows scenario- and sensitivity-driven evaluation patterns established 

in this literature. 

Selection and Provenance of WASH Evidence Corpus and Utility KPIs 

The WASH evidence corpus was assembled from public, aggregate 

programmatic statistics to support comparisons between gravity-fed and pump-

driven rural schemes. Evidence corpus integrity was maintained through explicit 

inclusion and exclusion rules and documented provenance checks. Fig. (2) traces 

the screening and lineage steps used to construct the corpus and derive KPI 

proxies. Public-supply water statistics, as in (Alzraiee et al., 2024), motivated 

treating inputs as aggregate cues rather than site measurements. 

 

 

Figure 2. Evidence corpus selection and provenance 

 

Table (1) summarizes corpus sources, applied controls, and KPI definitions. For 

evidence corpus integrity, key controls include train-only fitting, no lookahead, 



 
 

Varun Kumar Sharma et al. 

 

December 2025  Waterlines Vol 43 No 2 
 

 

cross-split leakage checks, hash-verified manifests with mismatch halts, and range 

validation. The resulting KPIs include decision consistency, Model calibration 

MAE, holdout stability, auditability KPI, and continuity MAE, consistent with 

reproducibility-oriented dataset reporting (Mialyk et al., 2024). Baselines include 

a capex-only comparison, a pump-availability rule-of-thumb, and surrogate 

decision tree and regularized regression models. 

Table 1. Corpus provenance and KPI mapping 

Corpus 

Element 

Provenance 

Cue 

Filter Or 

Control 

KPI Or Proxy 

Programmatic 

cohort 

Public WASH 

stats 

Public 

aggregate only 

Decision 

consistency 

Preprocessing Train-only fit No lookahead Model 

calibration 

MAE 

Splitting 

scheme 

Entity and 

context 

No cross-split 

leakage 

Holdout 

stability 

Lineage 

logging 

Hashed 

manifests 

Hash mismatch 

halt 

Auditability 

KPI 

Range 

validation 

Published 

ladders 

Range checks Continuity 

MAE 

Baseline Decision Approaches for Gravity-Fed vs Pump-Driven Schemes 

Baseline decision approaches for choosing gravity-fed versus pump-driven 

schemes typically reduce the problem to a small set of heuristics or single-criterion 

practical comparisons. Benchmarking therefore draws on established cost -

accounting and scenario-based evaluation traditions in water planning, which 

quantify cost drivers under varying conditions and test policy sensitivity to 

behavioral heterogeneity (Verlicchi et al., 2024; Vidal-Lamolla et al., 2024). Fig. 

(3) contrasts these baselines with the proposed model, clarifying the decision 

information each baseline omits. 

The present study treats baselines as intentional simplifications: capex-only 

ranking, a pump-availability rule-of-thumb, and statistical surrogates such as 

decision trees and regularized regression. Related resource-allocation models and 

simulation-optimization frameworks show how scenario structure and uncertainty 

handling can alter preferred actions, even with limited data (Sawassi et al., 2024; 
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Zhao et al., 2024). The proposed model adds explicit context -to-choice 

propositions and evaluable indicators (for example, model calibration mae cost, 

threshold stability percent) under grouped and external holdouts. This shift enables 

comparison beyond cost, including continuity prediction mae and stress tests for 

energy price and downtime. 

 

 

Figure 3. Baseline decision approaches comparison 

Conceptual Framework 

The conceptual framework links rural context conditions to the selection of 

gravity-fed or pump-driven distribution schemes and to expected service 

performance. The unit of analysis is a candidate scheme within a community 

context, encoded as technical feasibility, affordability constraints, and operator 

capacity. Core outcomes are expressed as calibrated cost predictions, decision-

threshold stability, and continuity predictions. This structure separates intervention 

choice from outcome measurement to support transparent comparison across 

settings. 

Mechanistically, gravity-fed schemes are expected to benefit from low recurring 

energy needs, while pump-driven schemes depend more strongly on energy price 

and downtime exposure, which can erode continuity. The framework treats these 
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links as propositions that can be tested using grouped and external holdouts, with 

preprocessing fitted on training data only and leakage audits. Sensitivity analyses 

and stress tests probe assumption robustness; competing explanations are not 

elaborated here. 

Key Constructs and Definitions for Life Cycle Cost and Reliability 

Core constructs are specified to support consistent coding of life cycle cost 

(LCC) and reliability in rural water scheme comparisons. For conceptual precision, 

Fig. (4) maps each construct to its unit, measurement source, and intended use in 

the benchmark protocol aligned with prior operational water-use analytics (Marsili 

et al., 2024; Mazzoni et al., 2024). Table (2) formalizes the coding rubric for model 

calibration mae cost (USD per m3), threshold stability percent (Percent), and 

continuity prediction mae (Hours). Grouped holdouts are recorded as group splits 

to prevent cross-group leakage. 

Equation (1) defines discounted LCC as capital expenditure plus discounted 

operating, energy, and repair costs over a horizon T at discount rate r. Equation (2) 

defines availability as MTBF divided by MTBF plus MTTR, linking failure and 

repair dynamics to expected service continuity. Reporting follows the operational 

definitions used for construct coding (Ogunbode et al., 2024), so that calibration 

error, threshold stability, and outage prediction error remain comparable across 

gravity-fed and pump-driven schemes. 

 

𝐿𝐶𝐶 = 𝐶𝑐𝑎𝑝𝑒𝑥 +∑
𝐶𝑜𝑚,𝑡 + 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 ,𝑡 + 𝐶𝑟𝑒𝑝𝑎𝑖𝑟,𝑡

(1 + 𝑟)𝑡

𝑇

𝑡=1

(1) 

 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
(2) 
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Figure 4. Key constructs and definitions 

Table 2. Construct definitions and units 

Construct Unit Or Scale Operational 

Definition 

Coding 

Guidance 

Model 

Calibration 

MAE Cost 

USD per m3 Mean absolute 

error 

Lower is better 

Threshold 

Stability 

Percent 

Percent Stable 

threshold share 

Higher is better 

Continuity 

Prediction 

MAE 

Hours Outage 

prediction error 

Lower is better 

Grouped 

Holdouts 

Group split External group 

holdout 

No cross-group 

leakage 

 

Boundary Conditions: Terrain, Demand, Affordability, and O and M Capacity 
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Boundary conditions are operationalized as context-defined applicability zones 

for terrain, demand, affordability, and O and M capacity, with subgroup definitions 

adapted from prior stakeholder and adoption typologies (Kimbowa et al., 2025; 

Tolessa, 2024). Fig. (5) delineates where gravity-fed or pump-driven schemes are 

expected to be feasible and where misapplication risks are highest. Table (3) 

specifies stress-test ranges, including demand from 30-650 GPCD and inlet 

turbidity up to 1863 NTU. Additional cues cover load-shedding disruption and 

peak-month scarcity. 

Affordability is treated as a hard constraint rather than a preference: Equation 

(3) encodes whether life-cycle cost (LCC) remains below an explicit maximum 

(C_max). The framework is not intended for settings in which prolonged resource 

deficits, policy shocks, or governance failures dominate service outcomes, because 

these dynamics can decouple infrastructure choice from observed reliability 

(Boeing et al., 2024; Visser et al., 2024). Boundary conditions therefore include 

non-applicability zones when O and M response capacity or energy reliability 

cannot sustain pumping continuity. 

𝐴𝑓𝑓𝑜𝑟𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑂𝐾 = 1{𝐿𝐶𝐶 ≤ 𝐶𝑚𝑎𝑥} (3) 

Figure 5. Applicability zones and boundaries 

Table 3. Boundary conditions and ranges 

Boundary Range Or setting Stress Test Cue 

Energy Reliability Load-shedding 

downtime 

Pumping disruption 

(Machimana et al., 

2024) 

Demand Level Per-capita use span 30-650 GPCD 

(Alzraiee et al., 2024) 

Water Scarcity Peak-month scarcity Unsustainable 

demand (Deng et al., 

2025) 

Treatment Quality High turbidity inlet Up to 1863 NTU 

(Verlicchi et al., 

2024) 
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Propositions and Implications 

Propositions link rural context to the comparative suitability of gravity-fed and 

pump-driven distribution schemes through affordability, operator capacity, and 

energy dependence. Where elevation head is available and energy prices are 

volatile, gravity-fed schemes are expected to reduce cost variance and improve 

continuity relative to pump-driven schemes. Where source levels fluctuate or 

distribution must be actively regulated, pump-driven schemes may better maintain 

service but at higher exposure to downtime and tariff shocks under typical rural 

maintenance constraints. 

These propositions remain evaluable because constructs are mapped to 

observable indicators, including model calibration mae cost, threshold stability_ 

percent, and continuity prediction mae, and are benchmarked against decision tree 

surrogate, regularized regression surrogate, capex-only comparison, and pump-

availability rule-of-thumb. Validation is intended to rely on grouped and external 

holdouts with leakage audits, with uncertainty quant ified by bootstrap intervals 

and paired tests. Alternative explanations and case-selection rules are not reported 

here, which limits interpretability. Sensitivity analyses for energy price and 

downtime provide partial robustness checks. 

Causal Mechanisms Linking Energy Downtime and Continuity Prediction MAE 

Continuity prediction MAE is expected to worsen when energy downtime 

increases, because supply interruptions directly distort observed continuity signals 

and degrade model generalization across contexts. Table (4) summarizes the causal 

logic and mechanisms by pairing each pathway with its key assumption and 

expected sign. Gravity Head Advantage implies that sufficient elevation head 

lowers energy dependence, which should improve continuity. By contrast, 

Pumping Energy Exposure links grid and fuel volatility to higher downtime risk 

and worse continuity (Hazimeh & Jaafar, 2024). 

The remaining pathways specify how constraints translate into longer outages 

and, in turn, larger continuity_prediction_mae under grouped holdouts. Operator 

Capacity Constraint assumes limited O and M staff, so repairs lag and outages 

persist. Affordability Cap Binding posits tariff and budget limits that defer 

maintenance and reduce reliability. Governance Feature Effect requires 

institutions to be measurable in the cohort, so better decisions plausibly reduce 

model_calibration_mae_cost; this assumption should be scrutinized, consistent 

with sensitivity to upstream model choices in (Hazimeh & Jaafar, 2024).  
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Table 4. Causal mechanisms and expected signs 

Mechanism Key 

Assumption 

Expected 

Effect 

Outcome Cue 

Gravity Head 

Advantage 

Sufficient 

elevation head 

Lower energy 

dependence 

Better 

continuity 

Pumping 

Energy 

Exposure 

Grid and fuel 

volatility 

Higher 

downtime risk 

Worse 

continuity 

Operator 

Capacity 

Constraint 

Limited O and 

M staff 

Slower repairs Longer outages 

Affordability 

Cap Binding 

Tariff and 

budget limits 

Deferred 

maintenance 

Lower 

reliability 

Governance 

Feature Effect 

Institutions 

measurable in 

data 

Better 

decisions 

Lower cost 

MAE 

Alternative Explanations: Governance Features and Capex-Only Comparisons 

Capex-only comparisons can misattribute scheme performance when 

governance and user behavior shape realized service levels. Regarding alternative 

explanations, observed advantages of gravity-fed or pump-driven options may 

reflect differences in rule enforcement, tariff compliance, or institutional 

legitimacy rather than hydraulics alone. Survey evidence indicates that acceptance 

of formal water management systems varies with socioeconomic attributes and 

existing irrigation practices (Morepje et al., 2024), implying that similar 

infrastructure can yield different outcomes across communities. 

A second competing mechanism is that irrigation access and farm income 

conditions may drive welfare-linked endpoints, obscuring attribution to 

distribution modality. In district-level comparisons, irrigators reported materially 

higher food security and production than non-irrigators, in association with 

household size and income (Mupaso et al., 2024). Distinguishing these 

mechanisms would require governance and livelihood covariates in the proposed 

rubric and holdout analyses; such evidence is not reported here and would clarify 

when capex-only baselines are misleading. 
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Evaluability: Grouped Holdouts, Bootstrap CI, and Decision Rules 

Evaluability was operationalized through a pre-specified validation blueprint 

that couples grouped holdouts with explicit decision rules for model acceptance. 

Fig. (6) outlines the grouped holdout structure, bootstrap uncertainty reporting, 

baseline comparisons, and acceptance decision rules used to keep the framework 

evaluable. Research design transparency is strengthened by fixing the split logic 

to prevent leakage across entities and contexts, and by committing to a stable 

baseline set for comparison. 

Equation (4) defines mean absolute error (MAE) as the average absolute 

deviation between predicted and observed values for each metric. Table (5) 

specifies grouped holdouts, 4 comparators, 3 primary metrics, and BCa 95% CI 

estimation via paired bootstrap with 2000 resamples and FDR correction. 

Evaluability is reinforced by linking acceptance cues (AC1-AC3) to these metrics, 

while robustness checks (ablations and stress tests) are planned with Seeds=10. 

Empirical outcomes are not reported here. 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖̂ − 𝑦𝑖|

𝑁

𝑖=1

(4) 

 

 

Figure 6. Validation blueprint and decision rules 



 
 

Varun Kumar Sharma et al. 

 

December 2025  Waterlines Vol 43 No 2 
 

 

Table 5. Validation protocol summary 

Element Specification Acceptance 

Cue 

Uncertainty 

Splits Grouped 

holdouts 

No leakage External group 

stratify 

Baselines 4 comparators Beat baseline Baseline set 

fixed 

Primary 

Metrics 

3 MAEs or % Meet AC1-

AC3 

BCa 95% CI 

Statistical Test Paired 

bootstrap 

FDR corrected 2000 resamples 

Robustness 

Checks 

Ablations, 

stress tests 

H2 support Seeds=10 

Limitations and Future Work 

Key limitations arise from the programmatic cohort and from transfer across 

settings, which can constrain how confidently gravity-fed and pump-driven 

choices generalize. Table (6) summarizes four recurring threats, their expected 

impacts, and the mitigations used to bound interpretation. Cohort gaps may miss 

local idiosyncrasies, a concern consistent with climate- and region-dependent 

water assessments reported in related footprint analyses (Demeke et al., 2024; 

Sharafi et al., 2024). These limitations define where conclusions should be treated 

as provisional rather than prescriptive. 

Robustness of reasoning is strengthened by sensitivity ranges, external holdouts 

for geography shift, and rubric quality controls based on inter-rater reliability plus 

adjudication, but the magnitude of residual bias is not reported here. Misuse 

guardrails remain necessary when translating results into guidance. Future work 

should expand the cohort to additional geographies and operator-capacity regimes, 

and formalize competing mechanisms that may explain scheme choice. 

Benchmark designs can draw on probabilistic scenario analysis and dynamic shock 

modeling used in adjacent water-systems studies (Elzaki & Al-Mahish, 2024; 

Zhang et al., 2024). 
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Table 6. Limitations and mitigations 

Limitation Impact Mitigation Boundary Cue 

Programmatic 

cohort gaps 

Local context 

miss 

Sensitivity 

ranges 

Local 

idiosyncrasies 

New geography 

transfer 

Generalization 

drift 

External 

holdouts 

Geography 

shift 

Rubric 

miscoding 

Measurement 

bias 

IRR plus 

adjudication 

Coder 

disagreement 

Policy misuse 

risk 

Unsafe 

guidance 

Misuse 

guardrails 
Out of scope 

Conclusion 

This study develops a conceptual basis for choosing gravity-fed or pump-driven 

rural water distribution schemes under affordability and operator-capacity 

constraints. The proposed model links contextual drivers to intervention choices 

and to observable service outcomes, enabling structured comparison beyond 

capex-only judgments. A coding rubric is specified to support consistent construct 

annotation by independent reviewers. A validation blueprint is outlined using 

grouped and external holdouts, calibration and continuity errors, and threshold 

stability, with comparisons to surrogate and rule-of-thumb baselines. 

The framework is intended for programmatic planning and policy guidance 

rather than site-specific engineering designs or procurement specifications. Its 

applicability may weaken where local hydrology, governance, or tariff regimes 

deviate from the cohort assumptions, and transfer across geographies remains 

uncertain despite external holdouts. Construct mis-coding is a practical risk and 

requires adjudication. Alternative mechanisms, such as political economy 

constraints or demand shifts, are not developed here, and empirical performance 

results are not reported. Planned sensitivity and stress tests can partially probe 

these uncertainties. 
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