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Abstract: This paper presents an operational conceptualmodel for choosing
between gravity-fed and pump-driven rural water distribution under
affordability limits and constrained operator capacity. Decisions in rural
WASH planning are often made with incomplete data and fragmented
governance, and practical frameworks that map context to testable decision
propositions remain limited. The proposed framework defines the unit of
analysis as a candidate scheme within a community context and specifies
constructs for life cycle cost (LCC), decision-threshold stability, and service
continuity, supported by a coding rubric and explicit causal mechanisms.
Evaluability is operationalized using grouped and external holdouts, 4
baseline comparators, 3 primary indicators, and BCa 95% confidence
intervals from paired bootstrap with 2000 resamples, alongside stress-test
ranges that include demand from 30-650 GPCD and inlet turbidity up to
1863 NTU. Empirical performance outcomes are not reported here; the
contribution is a transparent decision model with boundary conditions and
misuse guardrails intended to support rural water engineers and planners
selecting distribution modalities in resource-constrained programs.
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Introduction

Rural WASH planning often requires choosing between gravity-fed and pump-
driven distribution under affordability limits and constrained operator capacity.
Energy insecurity can make pump-dependent service brittle, as disruptions in
scheduled delivery have been documented in rural settings (Machimana et al.,
2024). Fig. (1) situates the decision setting around pumps, storage tanks, piping,
telemetry, and a checklist cue. The present study targets an operational conceptual
model that links context to these intervention choices.

Research design transparency is addressed by combining theory synthesis with
an explicit validation plan: constructs are defined for rubric-based coding,
propositions are stated as observable implications for service outcomes, and
evaluation rules emphasize grouped and external holdouts. The benchmarking
protocol aligns with prior work that highlights energy-water trade-offs and
infrastructure siting constraints (Karambelkar et al., 2025; Machimana et al.,
2024). Key limitations include incomplete representation of local idiosyncrasies
and potential misapplication outside stated boundary conditions.
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Figure 1. Rural WASH decision context scene
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Background and Related Foundations

Rural water distribution choices between gravity-fed and pump-driven schemes
are typically constrained by scarcity dynamics and operational intermittency.
Monthly sub-basin scarcity assessments quantify where and when demand exceeds
blue-water availability, motivating context-specific service targets (Deng et al.,
2025). Related optimization work on intermittent supply operations frames the
trade-offs among reliability, resource limits, and objectives, informing the present
benchmark protocol (Ayyash et al., 2024). These foundations justify treating
context and operating constraints as first-order determinants of feasible design
options.

Conceptually, the proposed framework draws on integrated accounts that link
human behavior, leadership, economic incentives, and technology in water crisis
management (Yasmeen et al., 2024), alongside Water-Energy-Food nexus
modeling that treats energy availability and cooperation as coupled drivers of water
service options (Lodge et al., 2024). Baselines are specified to anchor claims in
familiar decision rules, including a decision tree surrogate, regularized regression
surrogate, capex-only comparison, and a pump-availability rule-of-thumb.
Evidence corpus integrity remains bounded by what was assembled; explicit
inclusion and exclusion rules are not reported here.

Literature Review

Prior hydrological modeling provides context for resource availability and
demand that can condition rural distribution choices. WaterGAP v2.2e formalizes
naturalized water resource and use accounting with calibration against extensive
streamflow observations, offering reproducible inputs for scenario-based planning
(Schmied et al., 2024). Agent-augmented large-scale models further illustrate how
behavioral adaptation can shift shortage outcomes, highlighting the importance of
endogenous responses when evaluating intervention feasibility (Yoon et al., 2024).
These strands motivate a context-linked scheme selection model rather than a
purely hydraulic comparison.

System dynamics studies offer complementary structure for mapping policy
levers to service outcomes under uncertainty. Basin-scale analyses have tested
demand-side strategies across climate and socio-economic scenarios and reported
model accuracy in terms of mean absolute error (MAE), while noting that
economic feasibility can alter conclusions (Baharanchi et al., 2024). Disaggregated
water-food-energy simulations extend this logic via Monte Carlo sensitivity to

December 2025 Waterlines Vol 43 No 2



Comparative Analysis of Gravity-Fed vs. Pump-Driven Rural Water
Distribution Models

compare integrated policy bundles (Zahedi et al., 2024). The benchmark protocol
therefore follows scenario- and sensitivity-driven evaluation patterns established
in this literature.

Selection and Provenance of WASH Evidence Corpus and Utility KPls

The WASH evidence corpus was assembled from public, aggregate
programmatic statistics to support comparisons between gravity-fed and pump-
driven rural schemes. Evidence corpus integrity was maintained through explicit
inclusion and exclusion rules and documented provenance checks. Fig. (2) traces
the screening and lineage steps used to construct the corpus and derive KPI
proxies. Public-supply water statistics, as in (Alzraiee et al., 2024), motivated
treating inputs as aggregate cues rather than site measurements.
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- s — manifest

[ Eligibility _}_,{ Quality checks ]

( Exclude log \}

Selection

[ Included corpus »}—b[ Extract KPis ]—b[ Provenance manifest ]

Selection

Figure 2. Evidence corpus selection and provenance

Table (1) summarizes corpus sources, applied controls, and KPI definitions. For
evidence corpus integrity, key controls include train-only fitting, no lookahead,
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cross-split leakage checks, hash-verified manifests with mismatch halts, and range
validation. The resulting KPIs include decision consistency, Model calibration
MAE, holdout stability, auditability KPI, and continuity MAE, consistent with
reproducibility-oriented dataset reporting (Mialyk et al., 2024). Baselines include
a capex-only comparison, a pump-availability rule-of-thumb, and surrogate
decision tree and regularized regression models.

Table 1. Corpus provenance and KPI mapping

Corpus Provenance Filter Or KPI Or Proxy
Element Cue Control
Programmatic  Public WASH Public Decision
cohort stats aggregate only consistency
Preprocessing Train-only fit No lookahead Model
calibration
MAE
Splitting Entity and No cross-split Holdout
scheme context leakage stability
Lineage Hashed Hash mismatch  Auditability
logging manifests halt KPI
Range Published Range checks Continuity
validation ladders MAE

Baseline Decision Approaches for Gravity-Fed vs Pump-Driven Schemes

Baseline decision approaches for choosing gravity-fed versus pump-driven
schemes typically reduce the problem to a small set of heuristics or single-criterion
practical comparisons. Benchmarking therefore draws on established cost-
accounting and scenario-based evaluation traditions in water planning, which
quantify cost drivers under varying conditions and test policy sensitivity to
behavioral heterogeneity (Verlicchi et al., 2024; Vidal-Lamolla et al., 2024). Fig.
(3) contrasts these baselines with the proposed model, clarifying the decision
information each baseline omits.

The present study treats baselines as intentional simplifications: capex-only
ranking, a pump-availability rule-of-thumb, and statistical surrogates such as
decision trees and regularized regression. Related resource-allocation models and
simulation-optimization frameworks show how scenario structure and uncertainty
handling can alter preferred actions, even with limited data (Sawassi et al., 2024;
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Zhao et al., 2024). The proposed model adds explicit context-to-choice
propositions and evaluable indicators (for example, model calibration mae cost,
threshold stability percent) under grouped and external holdouts. This shift enables
comparison beyond cost, including continuity prediction mae and stress tests for
energy price and downtime.
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Figure 3. Baseline decision approaches comparison
Conceptual Framework

The conceptual framework links rural context conditions to the selection of
gravity-fed or pump-driven distribution schemes and to expected service
performance. The unit of analysis is a candidate scheme within a community
context, encoded as technical feasibility, affordability constraints, and operator
capacity. Core outcomes are expressed as calibrated cost predictions, decision-
threshold stability, and continuity predictions. This structure separates intervention
choice from outcome measurement to support transparent comparison across
settings.

Mechanistically, gravity-fed schemes are expected to benefit from low recurring
energy needs, while pump-driven schemes depend more strongly on energy price
and downtime exposure, which can erode continuity. The framework treats these
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links as propositions that can be tested using grouped and external holdouts, with
preprocessing fitted on training data only and leakage audits. Sensitivity analyses
and stress tests probe assumption robustness; competing explanations are not
elaborated here.

Key Constructs and Definitions for Life Cycle Cost and Reliability

Core constructs are specified to support consistent coding of life cycle cost
(LCC) and reliability in rural water scheme comparisons. For conceptual precision,
Fig. (4) maps each construct to its unit, measurement source, and intended use in
the benchmark protocol aligned with prior operational water-use analytics (Marsili
et al., 2024; Mazzoni et al., 2024). Table (2) formalizes the coding rubric for model
calibration mae cost (USD per m3), threshold stability percent (Percent), and
continuity prediction mae (Hours). Grouped holdouts are recorded as group splits
to prevent cross-group leakage.

Equation (1) defines discounted LCC as capital expenditure plus discounted
operating, energy, and repair costs over a horizon T at discount rate r. Equation (2)
defines availability as MTBF divided by MTBF plus MTTR, linking failure and
repair dynamics to expected service continuity. Reporting follows the operational
definitions used for construct coding (Ogunbode et al., 2024), so that calibration
error, threshold stability, and outage prediction error remain comparable across
gravity-fed and pump-driven schemes.

T
C +C +Copr s
LCC = Ccapex + Z om,t e(nleriyégt repair,t (1)
t=1
A MTBF
Availability = (2)
MTBF + MTTR
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Figure 4. Key constructs and definitions

Table 2. Construct definitions and units

Construct Unit Or Scale Operational Coding
Definition Guidance

Model USD per m3 Mean absolute Lower is better

Calibration error

MAE Cost

Threshold Percent Stable Higher is better

Stability threshold share

Percent

Continuity Hours Outage Lower is better

Prediction prediction error

MAE

Grouped Group split External group  No cross-group

Holdouts holdout leakage

Boundary Conditions: Terrain, Demand, Affordability, and O and M Capacity
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Boundary conditions are operationalized as context-defined applicability zones
for terrain, demand, affordability, and O and M capacity, with subgroup definitions
adapted from prior stakeholder and adoption typologies (Kimbowa et al., 2025;
Tolessa, 2024). Fig. (5) delineates where gravity-fed or pump-driven schemes are
expected to be feasible and where misapplication risks are highest. Table (3)
specifies stress-test ranges, including demand from 30-650 GPCD and inlet
turbidity up to 1863 NTU. Additional cues cover load-shedding disruption and
peak-month scarcity.

Affordability is treated as a hard constraint rather than a preference: Equation
(3) encodes whether life-cycle cost (LCC) remains below an explicit maximum
(C_max). The framework is not intended for settings in which prolonged resource
deficits, policy shocks, or governance failures dominate service outcomes, because
these dynamics can decouple infrastructure choice from observed reliability
(Boeing et al., 2024; Visser et al., 2024). Boundary conditions therefore include
non-applicability zones when O and M response capacity or energy reliability
cannot sustain pumping continuity.

Af fordabilityOK = 1{LCC < Cpqx} 3)

Figure 5. Applicability zones and boundaries

Table 3. Boundary conditions and ranges

Boundary Range Or setting Stress Test Cue
Energy Reliability Load-shedding Pumping disruption
downtime (Machimana et al.,
2024)
Demand Level Per-capita use span 30-650 GPCD
(Alzraiee et al., 2024)
Water Scarcity Peak-month scarcity Unsustainable

demand (Deng et al.,
2025)

Treatment Quality High turbidity inlet Up to 1863 NTU
(Verlicchi et al.,
2024)
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Propositions and Implications

Propositions link rural context to the comparative suitability of gravity-fed and
pump-driven distribution schemes through affordability, operator capacity, and
energy dependence. Where elevation head is available and energy prices are
volatile, gravity-fed schemes are expected to reduce cost variance and improve
continuity relative to pump-driven schemes. Where source levels fluctuate or
distribution must be actively regulated, pump-driven schemes may better maintain
service but at higher exposure to downtime and tariff shocks under typical rural
maintenance constraints.

These propositions remain evaluable because constructs are mapped to
observable indicators, including model calibration mae cost, threshold stability
percent, and continuity prediction mae, and are benchmarked against decision tree
surrogate, regularized regression surrogate, capex-only comparison, and pump-
availability rule-of-thumb. Validation is intended to rely on grouped and external
holdouts with leakage audits, with uncertainty quantified by bootstrap intervals
and paired tests. Alternative explanations and case-selection rules are not reported
here, which limits interpretability. Sensitivity analyses for energy price and
downtime provide partial robustness checks.

Causal Mechanisms Linking Energy Downtime and Continuity Prediction MAE

Continuity prediction MAE is expected to worsen when energy downtime
increases, because supply interruptions directly distort observed continuity signals
and degrade model generalization across contexts. Table (4) summarizes the causal
logic and mechanisms by pairing each pathway with its key assumption and
expected sign. Gravity Head Advantage implies that sufficient elevation head
lowers energy dependence, which should improve continuity. By contrast,
Pumping Energy Exposure links grid and fuel volatility to higher downtime risk
and worse continuity (Hazimeh & Jaafar, 2024).

The remaining pathways specify how constraints translate into longer outages
and, in turn, larger continuity prediction _mae under grouped holdouts. Operator
Capacity Constraint assumes limited O and M staff, so repairs lag and outages
persist. Affordability Cap Binding posits tariff and budget limits that defer
maintenance and reduce reliability. Governance Feature Effect requires
institutions to be measurable in the cohort, so better decisions plausibly reduce
model calibration_mae cost; this assumption should be scrutinized, consistent
with sensitivity to upstream model choices in (Hazimeh & Jaafar, 2024).
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Table 4. Causal mechanisms and expected signs

Mechanism Key Expected Outcome Cue
Assumption Effect
Gravity Head Sufficient Lower energy Better
Advantage elevation head dependence continuity
Pumping Grid and fuel Higher Worse
Energy volatility downtime risk continuity
Exposure
Operator Limited O and Slower repairs Longer outages
Capacity M staff
Constraint
Affordability Tariff and Deferred Lower
Cap Binding budget limits maintenance reliability
Governance Institutions Better Lower cost
Feature Effect  measurable in decisions MAE
data

Alternative Explanations: Governance Features and Capex-Only Comparisons

Capex-only comparisons can misattribute scheme performance when
governance and user behavior shape realized service levels. Regarding alternative
explanations, observed advantages of gravity-fed or pump-driven options may
reflect differences in rule enforcement, tariff compliance, or institutional
legitimacy rather than hydraulics alone. Survey evidence indicates that acceptance
of formal water management systems varies with socioeconomic attributes and
existing irrigation practices (Morepje et al., 2024), implying that similar
infrastructure can yield different outcomes across communities.

A second competing mechanism is that irrigation access and farm income
conditions may drive welfare-linked endpoints, obscuring attribution to
distribution modality. In district-level comparisons, irrigators reported materially
higher food security and production than non-irrigators, in association with
household size and income (Mupaso et al., 2024). Distinguishing these
mechanisms would require governance and livelihood covariates in the proposed
rubric and holdout analyses; such evidence is not reported here and would clarify
when capex-only baselines are misleading.
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Evaluability: Grouped Holdouts, Bootstrap CI, and Decision Rules

Evaluability was operationalized through a pre-specified validation blueprint
that couples grouped holdouts with explicit decision rules for model acceptance.
Fig. (6) outlines the grouped holdout structure, bootstrap uncertainty reporting,
baseline comparisons, and acceptance decision rules used to keep the framework
evaluable. Research design transparency is strengthened by fixing the split logic
to prevent leakage across entities and contexts, and by committing to a stable
baseline set for comparison.

Equation (4) defines mean absolute error (MAE) as the average absolute
deviation between predicted and observed values for each metric. Table (5)
specifies grouped holdouts, 4 comparators, 3 primary metrics, and BCa 95% CI
estimation via paired bootstrap with 2000 resamples and FDR correction.
Evaluability is reinforced by linking acceptance cues (AC1-AC3) to these metrics,
while robustness checks (ablations and stress tests) are planned with Seeds=10.
Empirical outcomes are not reported here.

N
1
MAE == 15, ~ i @)
i=1
i Data and splits Models and baselines ‘
‘ [ Programmatic cohort }———»[ Train (in-group) ] }
! | l

‘ [ QC and leakage audit ]
‘ [ Grouped splits —}—" 1—»[ Baselines J

Evaluation and uncertainty Decision rules
External Primary ST —
[ holdout } '[ metrics }%’( Acceptancerules ]
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[
|
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External ( Bosistrap] ( Booistrap ]

Figure 6. Validation blueprint and decision rules
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Table 5. Validation protocol summary

Element Specification Acceptance Uncertainty
Cue

Splits Grouped No leakage External group
holdouts stratify

Baselines 4 comparators Beat baseline Baseline set

fixed

Primary 3 MAEs or % Meet AC1- BCa 95% CI

Metrics AC3

Statistical Test Paired FDR corrected 2000 resamples
bootstrap

Robustness Ablations, H2 support Seeds=10

Checks stress tests

Limitations and Future Work

Key limitations arise from the programmatic cohort and from transfer across
settings, which can constrain how confidently gravity-fed and pump-driven
choices generalize. Table (6) summarizes four recurring threats, their expected
impacts, and the mitigations used to bound interpretation. Cohort gaps may miss
local idiosyncrasies, a concern consistent with climate- and region-dependent
water assessments reported in related footprint analyses (Demeke et al., 2024;
Sharafi et al., 2024). These limitations define where conclusions should be treated
as provisional rather than prescriptive.

Robustness of reasoning is strengthened by sensitivity ranges, external holdouts
for geography shift, and rubric quality controls based on inter-rater reliability plus
adjudication, but the magnitude of residual bias is not reported here. Misuse
guardrails remain necessary when translating results into guidance. Future work
should expand the cohort to additional geographies and operator-capacity regimes,
and formalize competing mechanisms that may explain scheme choice.
Benchmark designs can draw on probabilistic scenario analysis and dynamic shock
modeling used in adjacent water-systems studies (Elzaki & Al-Mahish, 2024;
Zhang et al., 2024).
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Table 6. Limitations and mitigations

Limitation Impact Mitigation Boundary Cue
Programmatic Local context Sensitivity Local
cohort gaps miss ranges idiosyncrasies
New geography  Generalization External Geography
transfer drift holdouts shift
Rubric Measurement IRR plus Coder
miscoding bias adjudication disagreement
Policy mi Unsaft Mi

olicy misuse n'sa e isuse . Out of scope
risk guidance guardrails

Conclusion

This study develops a conceptual basis for choosing gravity-fed or pump-driven
rural water distribution schemes under affordability and operator-capacity
constraints. The proposed model links contextual drivers to intervention choices
and to observable service outcomes, enabling structured comparison beyond
capex-only judgments. A coding rubric is specified to support consistent construct
annotation by independent reviewers. A validation blueprint is outlined using
grouped and external holdouts, calibration and continuity errors, and threshold
stability, with comparisons to surrogate and rule-of-thumb baselines.

The framework is intended for programmatic planning and policy guidance
rather than site-specific engineering designs or procurement specifications. Its
applicability may weaken where local hydrology, governance, or tariff regimes
deviate from the cohort assumptions, and transfer across geographies remains
uncertain despite external holdouts. Construct mis-coding is a practical risk and
requires adjudication. Alternative mechanisms, such as political economy
constraints or demand shifts, are not developed here, and empirical performance
results are not reported. Planned sensitivity and stress tests can partially probe
these uncertainties.
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