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Abstract: This study presents a decision-oriented conceptual model for
urban water, sanitation, and hygiene (WASH) digital twins that support
performance and resilience decisions under incomplete data and fragmented
governance. The central gap addressed is the absence of an operational
model that maps context and governance constraints to decisions through
propositions that can be evaluated, rather than asserted. The approach
specifies a three-layer architecture (operational state, model, decision),
encodes entities and intervention links using a knowledge graph, and fixes
constructs through a coding rubric aligned to pressure prediction, event
detection f1, and decision support uptime percent. A programmatic cohort
validation plan is defined using grouped holdouts by entity and context,
train-only preprocessing with entity ID leakage audits, baseline
comparisons (LSTM, isolation forest, static calibrated hydraulic model,
threshold alarm rules), and uncertainty reporting via BCa bootstrap 95%
confidence intervals with 2000 resamples; robustness is stress-tested under
missing-sensor slices, seasonal drift, and resource and climate constraints.
No empirical results are reported here, but the framework provides
auditable decision objects and a falsifiable evaluation protocol intended to
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guide utility operations and asset managers when selecting interventions
under affordability and capacity limits.

Keywords: Urban WASH Digital Twins, SCADA and IoT Data, Hydraulic
Decision Support, Non-Revenue Water Metrics, Utility Resilience Planning,
Monsoon Flood Risk, Grouped Holdout Validation, Evidence Provenance

Introduction

Urban water, sanitation, and hygiene (WASH) digital twins are framed as
operational decision-support models embedded in city digital infrastructures.
Recent syntheses indicate that the urban digital twin (UDT) landscape remains
fragmented, with uneven standards and limited cross-domain integration (Wu &
Guan, 2024). Fig. (1) situates the contribution in an urban WASH operations scene
where sensing, inference, and operator decisions interact. Positioning WASH
twins within this broader UDT context clarifies required interfaces, governance
constraints, and the practical limits of data completeness (Wu & Guan, 2024).
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Figure 1. Urban WASH digital twin domain scene

Al-enabled analytics can improve fault detection and service continuity, yet
water systems carry cyber-physical and governance risks that require caution
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(Richards et al., 2023). The analysis develops a conceptual model by synthesizing
urban digital twin ideas and adapting them to WASH operations. For research
design transparency, the approach defines core constructs, states propositions
linking context to decisions, and provides a coding rubric and cohort validation
plan. Scope is utilities operating with fragmented data; outputs target policy and
planning rather than site-specific engineering (Richards et al., 2023).

Background and Related Foundations

Urban digital twins increasingly require federation across heterogeneous assets
and jurisdictions, a need articulated in Internet of Federated Digital Twins
architectures that emphasize hierarchical interactions among physically separated
twins (Yu et al., 2024). Baselines for resilience-oriented digital twins include
lifecycle frameworks, such as urban flooding platforms spanning preparedness to
recovery, that structure end-to-end decision support (Ge & Qin, 2025). Fig. (2)
positions these baselines alongside cross-sector architecture surveys and
comparison axes relevant to critical infrastructure deployments (Al-Shetwi et al.,
2025; Alturki et al., 2024; Ardebili et al., 2024; Liu et al., 2024).
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Figure 2. Baselines landscape and comparison axes
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Smart-city implementations often fail under fragmented data, governance
constraints, and privacy or security risks, which motivates explicit treatment of
information stewardship in urban analytics (Gilman et al., 2024; Mupfumira et al.,
2024). Equity and citizen-centric concerns further shape what constitutes
actionable utility from digital twins, particularly where digital divides persist
(Bittencourt et al., 2025). Evidence corpus integrity is supported by drawing on
structured syntheses and SWOT-based assessments that make selection logic
explicit; the inclusion rules for additional sources are not reported here (Greif et
al., 2024).

Urban WASH Digital Twins: Baselines and Gaps

Urban WASH digital twins (DTs) require baseline comparators that reflect
prevailing utility automation practice while exposing structural limitations. Table
(1) compares four baseline approaches, their roles in the analysis, and the
corresponding gaps for Urban WASH DT decision support. Regarding baselines,
recurrent LSTM forecasting and isolation forest anomaly detection capture
temporal patterns but do not enforce hydraulic consistency or rich operational
context, consistent with limitations noted for data-driven automation in wastewater
control (Cairone et al., 2024).

Physics-based calibration remains an essential reference point, yet its data and
calibration burden can be misaligned with fragmented municipal records and
intermittent sensing. Simple threshold-based alarm rules offer transparent
deployment, but high false alarms can erode trust and mask rare but consequential
events. Stormwater monitoring reviews emphasize that current practices often
underestimate impacts and motivate harmonized e-monitoring for operation and
maintenance (Suits et al., 2023); this gap framing supports DT designs that couple
mechanistic constraints with context-aware detection.

Table 1. Baselines and gaps summary

Baseline Role In Study Key Gap For Citation
Approach WASH DT Anchor
LSTM State No physics Ref (Sathupadi
temporal forecasting constraints et al., 2024)
model baseline
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Isolation Anomaly Weak context Ref (Jameil &
forest baseline modeling Al-Raweshidy,
2025)
Hydraulic Physics Data and Ref (Cairone et
calibrated baseline calibration al., 2024)
model burden
Threshold Rule baseline High false Ref (Richards
alarm rules alarms et al., 2023)

Programmatic Cohort Evidence: Source Provenance and Inclusion Rules
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Figure 3. Cohort selection and provenance flow

Programmatic cohort construction required explicit provenance cues and
inclusion rules to keep the evidence corpus integrity auditable at platform scale.
Table (2) summarizes five source types, spanning public aggregate WASH
statistics, utility KPI catalogs, SCADA/IoT telemetry, digital twin frameworks,
and stormwater e-monitoring, with corresponding inclusion rules (non-personal
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city aggregates, operationally interpretable KPIs, persistent entity IDs, decision-
support relevance, and OandM decision tables) and integrity controls (range
checks, QC blockers, leakage prevention, and manifest hashing) (Bellini et al.,
2024).

Fig. (3) details how provenance cues are carried through selection so that each
cohort record can be traced from source category to the applied integrity control.
The flow mirrors middleware practices that log sensor collection and verify
deployment configurations, which reduces mismatch between data acquisition and
operational use (Langer et al., 2024). Evidence corpus integrity is therefore treated
as a gating criterion, but handling of incomplete or ambiguous provenance
metadata is not reported here and should be specified during cohort validation.

Table 2. Cohort provenance and inclusion rules

Source Type Provenance Inclusion Rule  Integrity
Cue Control
Public Published City-level, non-  Range checks
aggregate indicator personal
WASH stats ladders
(Richards et al.,
2023)
Utility KPI Utility KPI Operationally QC blockers
catalogs mapping interpretable
(Richards et al.,
2023)
SCADA/IeT Smart-city loT Entity IDs No cross-split
telemetry streams present leakage
(Gilman et al.,
2024)
Digital twin Urban DT Decision- Hash manifests
frameworks scope cues (Wu  support
& Guan, 2024)  relevant
Stormwater e-  Harmonized e- OandM Lineage
monitoring monitoring decision tables manifests
(Suits et al.,
2023)
Waterlines Vol. 43 No. 2 December 2025
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Conceptual Framework

The conceptual framework specifies a decision-oriented digital twin (DT)
architecture for urban WASH operations under fragmented observations. It
separates (i) an operational state layer that aggregates available measurements and
proxies, (i) a model layer that estimates pressures and detects events, and (iii) a
decision layer that selects actions subject to constraints. The design adapts DT
decision-support patterns that integrate data-driven components with explicit
domain knowledge (Ieva et al., 2024). Decision objects are defined as auditable
recommendations.

A knowledge graph is used to encode entities (assets, locations, sensors), their
relations, and the mapping from inferred DT states to candidate interventions,
enabling consistent construct labelling across utilities. This structure also supports
evaluability by linking each proposition to observable indicators such as pressure
prediction mae, event detection fl, and decision support uptime percent. The
mechanism assumes that missing-data patterns are not fully adversarial, when
reporting gaps dominate, graph-based reasoning may still propagate bias, a
limitation noted in related DT prototypes (Ieva et al., 2024).

Key Constructs and Definitions for SCADA and loT Data

Conceptual precision is enforced by fixing constructs, units of analysis, and
coding cues used to label Supervisory Control and Data Acquisition (SCADA) and
IoT evidence in the WASH digital twin (DT) rubric. Table (3) defines Pressure
Prediction MAE (Mean abs pressure error, meters), Event Detection F1 (0-1 on
burst/contam events), and Decision Support Uptime (percent DT availability), plus
the Grouped Holdout split rule and the BCa Bootstrap CI (95% CI; 2000
resamples) with associated coding cues. Definitions follow monitoring DT patterns
(Jameil & Al-Raweshidy, 2024, 2025).

Latency-sensitive streaming is treated as a property of the sensing pipeline rather
than a model metric, because delayed telemetry can mimic anomalous behavior
and distort event labels. Fig. (4) summarizes the construct hierarchy and unit of
analysis used when mapping raw sensor streams to monitoring, detection, and
decision-support outcomes. The same coding cues should be applied when
interpreting reports of low-latency digital twin monitoring architectures and their
response-time trade-offs (Jameil & Al-Raweshidy, 2024).
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Figure 4. Core constructs and definitions panel

Table 3. Key constructs and definitions

Construct Operational Unit/Scale Coding Cue
Definition
Pressure Mean abs Meters Group holdout
Prediction pressure error MAE
MAE
Event F1 on 0-1 Stress scenario
Detection F1 burst/contam labels
events
Decision DT available Percent SLO log
Support for decisions uptime
Uptime
Grouped Split by Split rule No cross-ID
Holdout entity/context leakage
Waterlines Vol. 43 No. 2 December 2025
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BCa Bootstrap  Bias-corrected 95% CI

CI accel interval

2000 resamples

Boundary Conditions and Applicability Across Geography and Service Level

Applicability across geography depends on the availability and stability of
context signals, which can be uneven under crisis and across sensing
infrastructures. Evidence from collective, near-real-time disaster sensing indicates
that coverage and representativeness can shift with platform access and local
communication practices (Moghadas et al., 2023). Table (4) summarizes boundary
conditions and associated applicability limits for geographic transfer and service-
level use. The framework therefore assumes public, city-level aggregates and
becomes unsuitable when individual tracing or personally identifiable information
is required.

Boundary conditions also govern evaluation and decision outputs. Grouped
holdouts by geo-context groups are required to test transfer; independent and
identically distributed cross-validation is not informative under spatial and
institutional clustering. Preprocessing is restricted to training splits to prevent
cross-split leakage, and an entity identifier audit is needed when common vendors
or assets recur. Post-flood recovery analyses show that climate shocks and locally
adjusted interventions condition outcomes, so stress tests should encode
affordability and capacity bounds rather than assume unbounded resources (Li et
al., 2022).

Table 4. Boundary conditions and applicability

Boundary Applies When Fails When Design Cue
Public City-level Individual No PII policy
aggregate only  indicators tracing needed
Grouped Geo-context IID CV only Leave-group-
holdouts groups out
Train-only Split isolation Cross-split Entity ID audit
preprocessing leakage
Constraint Affordability, Unbounded Encode hard
stress tests capacity resources bounds
Decision-only Policy Engineering No BoQ design
outputs guidance drawings

December 2025 Waterlines Vol 43 No 2
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Mechanism Pathways From Sensors to Decisions to Resilience

Sensor-to-decision pathways in urban WASH digital twins are constrained by
where sensing, inference, and optimization execute across edge and cloud nodes.
Prior edge-cloud frameworks show that workload placement and offloading
directly trade decision latency against bandwidth and energy, which matters under
operational shocks (Lahza et al., 2024; Sathupadi et al., 2024; Shinde & Tarchi,
2024; Zhang et al., 2024). Scheduling policies further couple resource allocation
to response time and success rates for digital-twin workloads (Lahza et al., 2024;
Qi et al., 2024). Table (5) maps these mechanisms to operational cues, measurable
implications, and validation handles.

Each pathway is paired with an observable indicator. For causal logic and
mechanisms, governance-aware coding targets lower coding variance, supported
by IRR and adjudication with Two annotators, 15%, while uncertainty reporting
uses BCa bootstrap CI for decision thresholding with 2000 resamples. Equation
(1) defines leakage-safe feature scaling by standardizing using training-split
statistics, aligned with entity-ID audit expectations. Health staffing analogs clarify
decision consequences under capacity limits (Bdjenaru et al., 2024; Fischer et al.,
2024), and structural pathway modeling can formalize these linkages (Fernandes
et al., 2022).

Xi = Utrain
si=———= €))
Otrain

Table 5. Mechanisms and testable implications

Mechanism Operational Measurable Validation
Cue Implication Handle

Governance- IRR and Lower coding Two

aware coding adjudication variance annotators,

15%

Cohort Constraints and  Stable holdout Resource and

realism stress tests metrics climate

bounds

Leakage-safe Train-only No split Entity-ID audit

learning preprocessing leakage
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Uncertainty BCa bootstrap Decision 2000 resamples
reporting CI thresholding

Propositions and Implications

The propositions link urban context, data completeness, and governance
constraints to digital-twin decisions for pressure management, event response, and
continuity of service. Observable implications are specified in pressure prediction
mae, event detection f1, and decision support uptime percent, with comparisons to
an LSTM temporal model without physics, isolation forest anomaly detection, a
static calibrated hydraulic model, and threshold-based alarm rules. A coding rubric
is used to label constructs consistently so that propositions can be evaluated across
utilities and asset managers.

The implications are bounded to programmatic cohorts built from public WASH
statistics and operations proxies; site-specific engineering designs and clinical
health trials are explicitly outside scope. Evaluation is intended to use grouped
holdouts by entity and context, external holdouts by predefined groups, and train-
only preprocessing with anchored tuning and an embargo to prevent lookahead.
Robustness is appraised under concept drift over seasons, missing sensor slices,
and shock scenarios for burst and contamination events.

HI and H2: Grouped Holdouts and Primary Metrics Definitions

Grouped holdouts are used to test H1 and H2 under leave-group-out splits that
separate evaluation groups by entity and context. Fig. (5) specifies the splits,
metrics, and acceptance criteria required for auditable evaluation. Table (6)
enumerates the split strategy, leakage control via entity ID separation with no
cross-split leakage, and uncertainty reporting using BCa bootstrap confidence
intervals with alpha 0.05. These pre-committed elements support research design
transparency and evaluability by constraining tuning and interpretation to recorded
rules across groups.
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Figure 5. Grouped holdout validation blueprint

Mean Absolute Error (MAE) is the mean absolute difference between predicted
and observed pressure over N samples, as defined in Equation (2). The F1 score
summarizes event detection as the harmonic mean of precision and recall, as
defined in Equation (3). Decision-support uptime percent is the fraction of
available time over total time, expressed as a percent, as defined in Equation (4).
Acceptance requires meeting AC1-AC3 on MAE, F1, and Uptime, with a halt rule
when CI overlap with the baseline is >50%.

N
1
MAE :sz—yil (2)
i=1
£l = 2 Precision - Recall 3)
"~ Precision + Recall
. Tavailable
Uptime = 100 - ——— (4)

7}otal
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Table 6. Splits, metrics, and acceptance criteria

Element Specification Acceptance

Split Strategy Grouped holdouts Leave-group-out
Leakage Control Entity ID separation No cross-split leakage
Uncertainty BCa bootstrap CI Alpha 0.05
Reporting

Primary Metrics MAE, F1, Uptime Meet AC1-AC3

Halt Rule CI overlap baseline Stop if >50%

Alternative Explanations. Static Hydraulic Model and Threshold Alarms

Static calibrated hydraulic models and threshold-based alarm rules provide
plausible alternative explanations for decision-support gains in an urban WASH
digital twin, because they can flag deviations without learning latent temporal
structure. To operationalize these alternatives, hybrid edge-cloud baselines are
considered in which lightweight anomaly detection runs at the edge and time-series
prediction is centralized, consistent with resource-aware designs in predictive
maintenance (Sathupadi et al., 2024). This framing enables direct contrasts against
learning-based decision support while retaining realistic latency and bandwidth
constraints.

The alternative explanations differ in mechanism: a static hydraulic model
attributes pressure and flow residuals to fixed network parameters, whereas
threshold alarms treat excursions as events independent of context. Learning-based
pipelines, including edge anomaly detectors paired with cloud LSTM predictors
(Sathupadi et al., 2024), can instead represent seasonality, demand shifts, and
compound shocks, but risk confounding under incomplete sensing. Discrimination
therefore requires evaluations under grouped holdouts, missing-sensor slices, and
burst or contamination scenarios; empirical results for these contrasts are not
reported here.

Robustness Stress Tests Under Monsoon Flood Risk and Resource Constraints

Monsoon-driven flooding can impose simultaneous shocks on urban WASH
sensing, power availability, and connectivity, which constrains how a digital twin
can update states and recommend actions. Sustainable Al work emphasizes that
energy and compute budgets shape what can be deployed responsibly, not only
what is accurate (Leon, 2024). For robustness of reasoning, stress tests are defined
as counterfactual resource caps that force simplified inference, delayed updates,
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and selective monitoring, so resilience claims remain conditional on feasible
operating budgets.

These constraints can reverse apparent advantages of data-hungry or frequently
retrained components, especially when flood events co-occur with load shedding
or limited on-premise capacity. Robustness of reasoning is strengthened by
checking edge cases in which decision_support_uptime percent is prioritized over
marginal gains in pressure prediction mae or event detection fl, and by
contrasting outcomes under static calibrated hydraulic model or threshold-based
alarm rules. Quantitative energy accounting and hardware-specific profiling are
not reported here, but should accompany deployment claims (Le6n, 2024).

Limitations and Future Work

External validity remains the principal limitation because the proposed urban
WASH digital twin framework is not accompanied by field results, and available
analog evidence often relies on small monitored cohorts. Prior digital twin
monitoring studies in healthcare report strong performance but use limited real-
time participant counts and tightly controlled telemetry pipelines (Jameil & Al-
Raweshidy, 2024, 2025). Fig. (6) summarizes failure modes, confounders, and
misuse risks that can distort apparent gains. These limitations motivate cautious
interpretation of any decision-support claims.

Future work should prioritize cohort-based validation with utilities and asset
managers using grouped holdouts across contexts and geographies, and should
report sensitivity to missing sensor slices and seasonal drift. Competing
explanations, such as operational changes that coincide with model deployment,
need explicit measurement to reduce confounding. Evidence from simulation-only
urban optimization studies can overstate robustness when operational constraints
and data fragmentation are absent (Lahza et al., 2024). Stronger falsification
criteria and misuse guardrails are required before policy translation.
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Figure 6. Failure modes and misuse guardrails

Conclusion

The present study specifies a decision-oriented conceptual model for urban
WASH digital twins operating under incomplete and fragmented data. Context
variables are mapped to performance and resilience decisions, and propositions are
stated to make expected effects observable. A reviewer-facing coding rubric is
defined to standardize construct labeling. A programmatic cohort validation design
is outlined using grouped holdouts, train-only preprocessing, embargoed tuning,
and BCa bootstrap confidence intervals against baseline models. Several
constraints temper immediate claims. No empirical results are reported here, and
the proposed Urban WASH DT Ops Cohort relies on public statistics and
operational proxies that can omit local idiosyncrasies. Transfer across geographies
is therefore treated as an explicit external-holdout question. Construct mis-coding
remains a failure mode, motivating dual-annotator checks and adjudication.
Decision support recommendations may be misapplied, so the framework is
intended for policy guidance rather than site-specific engineering design.
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