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Abstract: This paper presents a conceptual model for affordable Internet of 

Things (IoT)-enabled rural groundwater service assurance, where decisions 

must remain consistent under sparse telemetry and fragmented governance. 

Existing smart water monitoring approaches are largely tuned to urban 

distribution systems and rarely provide an operational mapping from rural 

context to intervention choices with testable propositions. The proposed 

framework defines decision-relevant constructs and boundary conditions, 

paired with a compact coding rubric whose unit of analysis is a telemetry 

configuration, separating 1 s sensing from 15 min uploads to represent 

latency and dropout mechanisms. Evaluability is enforced through a 

programmatic cohort validation design for the Rural Groundwater Service 

Telemetry Cohort using grouped holdouts by geography, entity, and context, 

with baseline comparisons against logistic regression, random forest, rule-

based monitoring, and manual logbook classification. Uncertainty reporting 

is specified via bias-corrected and accelerated (BCa) bootstrap intervals 

over 10 seeds and 2000 resamples (alpha 0.05), and applicability is 

restricted to settings where pumping measurably alters connected streams 

or storage (about 20% and 16%, with end-of-century shifts toward 30% and 
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12%). The framework supports community operators and district water, 

sanitation, and hygiene (WASH) engineers in selecting low-cost 

interventions with auditable decision logic under resource constraints. 

 

Keywords: Rural Groundwater Monitoring, Borewell Telemetry, Internet of Things 

(IoT), Service Assurance Framework, Governance Taxonomy, Grouped Holdout 

Validation, Inter-Rater Agreement (Kappa), Predictive Utility (AUC) 

Introduction 

Reliable rural groundwater supply depends on timely detection of pump failure, 

power instability, and declining borewell yield, yet monitoring is often intermittent 

and weakly standardized. Smart water management literature emphasizes that 

utilities adopt sensing and analytics unevenly in the absence of common operating 

standards and cohesive policy (Owen, 2023). Fig. (1) anchors the analysis in a 

borewell telemetry decision setting where community operators and district 

WASH engineers require actionable, low-cost service assurance. 

 

 

Figure 1. Borewell IoT service assurance context 

Existing IoT architectures for intelligent water networks prioritize real-time 

monitoring and control in distribution systems (Velayudhan et al., 2022), whereas 
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rural borewell services face constrained budgets, sparse connectivity, and limited 

operator capacity. Research design transparency is maintained through a 

conceptual synthesis approach: constructs for reliability and governance are 

defined, mapped to candidate interventions, and expressed as evaluable 

propositions for programmatic validation using public WASH statistics. These 

choices align with utility practice while adapting to rural constraints (Owen, 2023). 

 

Background and Related Foundations 

Affordable sensing and telemetry are increasingly used to extend water 

monitoring, yet field deployments highlight technical and socio-technical 

constraints that shape what can be inferred and acted upon (Hamel et al., 2024). 

Digital water services formalize monitoring-to-decision pipelines through 

standardized procedures that combine domain models with AI/ML, improving 

consistency and scalability of operational reasoning (Ciliberti et al., 2023). Fig. (2) 

contrasts this study's conceptual model with rule-based monitoring, manual 

logbook governance classification, logistic regression, and random forest baselines 

to delimit added value. 

Groundwater service assurance depends on hydrologic responses that couple 

pumping, storage, and streamflow, and climate change can shift their relative 

contributions, which motivates explicit assumptions about groundwater-surface 

water interactions (Graaf et al., 2024). Adjacent IoT-enabled irrigation literature 

emphasizes automation and water-saving potential, but it is optimized for crop 

water productivity rather than rural supply reliability (Ahmed et al., 2023; Kumar 

& Chandana, 2024). Evidence corpus integrity is treated as a safeguard; specific 

inclusion and exclusion criteria for the cited sources are not reported here. 
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Figure 2. Baselines and value added summary 

Literature Review 

Prior water-monitoring deployments largely target urban distribution systems, 

emphasizing real-time sensing, cloud dashboards, and alerting workflows (Iancu 

et al., 2024; Sugiharto et al., 2023). Reported accuracy metrics are heterogeneous, 

and some sensing dimensions remain unreported (Sugiharto et al., 2023). 

Architectural variants add authenticated data sharing via blockchain-enabled 

telemetry and modular interfaces (Naqash et al., 2023). These baselines clarify 

typical assumptions about connectivity, power, and operator capacity. The present 

study positions affordable rural groundwater telemetry against such baselines, 

retaining event detection while reducing dependence on continuous backhaul and 

complex trust infrastructure 

Rural deployments face adoption constraints rooted in limited technical 

expertise, uncertain security practices, and intermittent connectivity, consistent 

with adoption syntheses in adjacent irrigation settings and sectoral network 

surveys (Jabbari et al., 2024; Tomaszewski & Kołakowski, 2023). Threat surfaces 

expand with remote access and multi-stakeholder operations; defence-in-depth and 

least-privilege remain central design principles (Adelani et al., 2024). Sensor 

choice also shapes feasible integration, spanning electrochemical, biosensing, and 

paper-based modalities with wireless backhaul options (Mutunga et al., 2024b). 

Evidence corpus integrity is not fully verifiable because formal inclusion rules are 

not reported here. 

Materials and Methods 

Low-cost IoT telemetry was specified using prior well monitoring, water-quality 

sensing, and retrofitted meter readings (Bogdan et al., 2023; khot, 2025; Lall et al., 

2024; Ortiz et al., 2023). Networking assumptions favored off-grid links and 

packet robustness, using LoRa/GSM evidence and related field platforms (Fay et 

al., 2023; Mutunga et al., 2024a, 2025; Payero, 2024). On-device analytics trade-

offs followed TinyML constraints and sensing-to-action designs for irrigation and 

hazards (Atanane et al., 2023; Braveen et al., 2023; A. K. Sharma et al., 2023; V. 

K. Sharma et al., 2025; Tzerakis et al., 2023), and contextual covariates were 

derived from GIS/MCDA and policy modeling precedents (Aghazadeh et al., 

2024; Ashraf et al., 2024). 

Research design transparency was enforced by freezing config.yaml, recording 

seed_log.csv, and checking a SHA-256 manifest hash (manifest_sha256.txt). 
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Table (5) enumerates lineage artifacts and halt triggers for manifest mismatch, split 

leakage, config drift, missing seed logs, and train-only scaling violations. Evidence 

corpus integrity was protected by split lineage checks (split_hashes.json) and train-

only preprocessing; inclusion or exclusion rules for public WASH sources are not 

reported here. Fig. (3) summarizes provenance, leakage audits, and QC gates for 

the cohort (Fay et al., 2023; Payero, 2024). 

 

 

Figure 3. Cohort provenance and leakage controls 

Table 1. Cohort spec and leakage controls 

Purpose Leakage Or QC 

Control 

Halt Trigger 

Lineage hash Manifest mismatch Stop pipeline 

Split lineage Split leakage audit Stop pipeline 

Config freeze Pre-committed 

windows 

Stop if changed 

Seed trace Fixed seeds Stop if missing 

No leakage Fit train only Stop if violated 
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Conceptual Framework 

Governance constraints and service assurance goals are translated into decision-

relevant constructs for decentralized groundwater operations, consistent with 

evidence that institutional arrangements shape affordability and differentiated 

service quality (Subramanyam, 2024). For conceptual precision, each construct is 

defined with an operational cue and a clear unit of decision, so that coding and 

monitoring use the same language. Table (1) defines the Affordability Cap, 

Operator Capacity, Grouped Holdouts, Evidence Integrity, and WASH Indicator 

Ladder, alongside conditions of applicability and failure. 

 

Figure 4. Constructs and boundary conditions map 

Boundary conditions are treated as first-class elements, not afterthoughts, 

because governance mechanisms can invert under overload, budget overruns, or 

leakage between grouped splits (Subramanyam, 2024). For boundary conditions, 

the framework distinguishes when a rule supports deployment generalization 

(grouped holdouts) and when it collapses (cross-split leakage or failed leakage 

audits). Fig. (4) positions these constructs against resource constraints and public 

WASH statistics, clarifying non-applicability when values fall outside the ladder 

or when operator response-time limits are exceeded.= 
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Table 2. Constructs and boundary conditions map 

Construct Operational 

Cue 

Applies When Fails When 

Affordability 

Cap 

Cost fields 

bounded 

Budget 

constrained 

Cap exceeded 

Operator 

Capacity 

Response time 

limit 

Low staffing Overload 

periods 

Grouped 

Holdouts 

Geography-

context splits 

Deployment 

generalization 

Cross-split 

leakage 

Evidence 

Integrity 

Train-only 

preprocessing 

Model fit stage Leakage audit 

fails 

WASH 

Indicator 

Ladder 

Range-check 

ladder 

Public WASH 

stats 

Out-of-ladder 

values 

Key Constructs and Definitions for Borewell IoT Telemetry 

Borewell IoT telemetry is defined here as time-stamped measurements captured 

inside or near a well, together with the sampling and reporting constraints that 

shape data completeness. Core signals include piezometric water level, water 

temperature, ambient temperature, and atmospheric pressure, along with inferred 

pumping events derived from level dynamics (Ortiz et al., 2023). Sampling 

cadence (e.g., 1 s sensing) and batched transmission (e.g., 15 min uploads) are 

treated as separate constructs because they induce distinct latency and dropout 

patterns. 

Affordable monitoring architectures typically couple a low-power 

microcontroller with a non-contact water-level sensor (often ultrasonic) and, where 

relevant, soil-moisture probes, then stream readings to a lightweight cloud 

dashboard (khot, 2025). For conceptual precision, the unit of analysis in the coding 

rubric is a telemetry configuration, not an individual reading. Equation (1) defines 

taxonomy coverage as the ratio of coded configurations to the total, reported as a 

percent, enabling auditable completeness checks. 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑁𝑐𝑜𝑑𝑒𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

(1) 

Boundary Conditions for Rural Groundwater Service Assurance Decisions 
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Boundary conditions for hydroclimate-pumping interactions restrict the 

proposed service-assurance logic to settings where pumping can measurably alter 

connected streams or aquifer storage. Global coupled groundwater-surface water 

evidence indicates that about 20% of pumped groundwater derives from 

diminished streamflow and 16% from reduced storage, with end-of-century shifts 

toward 30% and 12% under climate change (Graaf et al., 2024). The framework is 

not intended for hydro geologically isolated aquifers where capture is negligible 

or delayed. 

Water-scarcity operating constraints assume dryland irrigation or rural supply 

systems where demand management is feasible but capital and energy are limited. 

Reviews of smart irrigation in global drylands emphasize that scarcity and climate 

variability motivate tighter scheduling and efficiency, not higher abstraction 

(Ahmed et al., 2023). Accordingly, decision rules should prioritize minimum-

service reliability and enforce pumping caps when telemetry indicates persistent 

deficit. Applicability weakens where surface water dominates, where governance 

cannot implement caps, or where irrigation objectives override drinking-water 

assurance. 

Propositions and Implications 

The propositions articulate how rural groundwater service context maps to 

operational actions and, in doing so, make causal logic and mechanisms explicit. 

The first proposition expects the model to beat baselines through context-to-action 

mapping rather than feature engineering only. Table (3) links each proposition to 

a mechanism cue, a competing explanation, and a discriminator test, enabling 

alternative explanations such as geography confounding to be separated using 

holdouts and ablations. Evaluability follows from these stated tests. 

Fig. (5) contrasts the central context-to-action pathway with competing paths 

that attribute stability across holdouts to geography confounding or apparent 

robustness to a data quality control artifact. Robustness of reasoning is 

strengthened by specifying leave-group-out and dropout stress tests as 

discriminators. High inter-rater reliability is treated as an empirical claim, not an 

assumption, by proposing blind re-coding to isolate rubric clarity from annotator 

training effects under field conditions. 
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Figure 5. Mechanisms and competing explanations 

Table 3. Propositions and competing explanations 

Proposition Mechanism 

Cue 

Competing 

Explanation 

Discriminator 

Test 

Model beats 

baselines 

Context-to-

action mapping 

Feature 

engineering 

only 

Holdout, 

ablations 

Stable across 

holdouts 

Invariant 

construct links 

Geography 

confounding 

Leave-group-

out 

Robust under 

stress 

Constraint-

aware decisions 

Data QC 

artifact 

Dropout stress 

test 

High IRR 

achievable 

Rubric coding 

clarity 

Annotator 

training effect 

Blind re-code 

sample 

Causal Mechanisms Linking Governance Taxonomy to Predictive Utility AUC 
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Linking a governance taxonomy to predictive utility AUC rests on the premise 

that governance shapes failure processes that telemetry alone cannot resolve. 

Governance constructs such as financing regularity, operator capacity, and 

maintenance accountability affect response times to breakdowns, frequency of 

pump downtime, and sensor dropout patterns. When these constructs are coded 

consistently, they act as stable context variables that reduce label noise and allow 

classifiers to separate structurally different sites, which should increase AUC under 

grouped holdouts. 

The causal logic and mechanisms imply testable propositions: adding taxonomy 

codes to baseline models (logistic regression, random forest, or rule-based 

monitoring) should improve AUC most where governance heterogeneity is high, 

and gains should persist in leave-group-out evaluation. AUC is not causality. 

Formal mediation or counterfactual identification is not reported here, so the 

mechanism is advanced as an explanatory rationale rather than a confirmed 

pathway for the available data. 

Alternative Explanations for Reliability Features and Rule-Based Monitoring 

Reliability signals derived from affordable IoT telemetry can appear predictive 

even when they proxy for unmodeled program conditions. For example, data 

completeness or device placement may correlate with better-funded sites and more 

responsive maintenance, inflating apparent associations with service outcomes. 

Rule-based monitoring can also be disadvantaged when thresholds ignore context 

or when labels reflect the same operational rules. Alternative explanations are 

therefore plausible; decisive empirical separation of these mechanisms is not 

reported here for the cohort. 

To distinguish genuine causal links from proxies, the evaluation should ask 

whether predictive utility persists under grouped holdouts by geography, entity, 

and context, and under sensor-dropout stress tests. If rule-based monitoring fails 

mainly from mis-specified thresholds, its performance should recover after 

context-aware tuning without improving coding reliability. If model gains vanish 

when leakage controls enforce entity-id separation, the mechanism is incompatible 

with predictive learning. Such falsification tests remain to be documented with the 

available data. 

Robustness Stress Tests: Sensor Dropout and Affordability Caps 
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Robust deployment of affordable groundwater telemetry depends on tolerating 

missing or degraded wireless packets, which has been observed in rural LoRa and 

mixed-link monitoring systems (Mutunga et al., 2024a, 2025). Table (4) 

summarizes the stress tests and associated acceptance checks used to guard the 

decision framework against such operational shocks. Sensor dropout is treated as 

an assumption sensitivity probe rather than an afterthought, because inference can 

fail even when sensing hardware remains functional. 

The robustness of reasoning is enforced through complementary checks for 

wireless telemetry integrity, each paired with a clear failure action. Grouped 

holdouts vary geography and context to verify leave-group-out stability, while 

leakage audit targets entity ID overlap to prevent cross-split contamination. 

Resource constraints vary affordability and capacity, requiring bounds-respecting 

decisions before any recommendation is issued. Bootstrap stability varies seed and 

resamples and passes only when the CI meets AC1-AC3; otherwise analysis halts 

(Mutunga et al., 2025). 

Table 4. Stress tests and pass rules 

Stress Test What Varies Pass Rule Failure Action 

Grouped 

Holdouts 

Geography, 

context 

Leave-group-

out stable 

Halt; redesign 

split 

Sensor 

Dropout 

Missing 

telemetry 

Metric OK 

under dropout 

Flag; report 

sensitivity 

Resource 

Constraints 

Affordability, 

capacity 

Bounds-

respecting 

decisions 

Halt; revise 

bounds 

Leakage Audit Entity ID 

overlap 

No cross-split 

leakage 

Halt; fix 

pipeline 

Bootstrap 

Stability 

Seed, 

resamples 

CI meets AC1-

AC3 

Halt if CI rule 

Evaluability: Grouped Holdouts, BCa Bootstrap CI, and Kappa 

Evaluability is operationalized through grouped holdouts that test leave-group-

out generalization across geography, entity, and context. Table (2) specifies the 

split logic, the LR, RF, rules, and manual baselines, and the primary metrics 

(Kappa, coverage, AUC) with acceptance cues AC1-AC3. Research design 

transparency is reinforced by pairing baseline comparisons with explicit leakage 
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and QC audits and a halt rule on failures. Equation (2) defines Kappa as agreement 

beyond chance. 

Uncertainty is quantified using BCa bootstrap intervals computed over 10 seeds 

and 2000 resamples, aligning confidence statements with the grouped-holdout 

design. Fig. (6) summarizes the evaluation blueprint, including the grouped 

holdouts, the use of BCa confidence intervals, and the decision criteria for 

accepting or rejecting performance. Equation (3) describes how the chosen alpha 

is mapped to a BCa percentile. These elements make failure cases observable 

rather than implicit. 

 

𝜅 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

(2) 

 

𝑝𝐵𝐶𝑎 = 𝛷 (𝑧0 +
𝑧0 + 𝑧𝛼

1 − 𝑎 (𝑧0 + 𝑧𝛼)
) (3) 

 

 

Figure 6. Evaluation blueprint and acceptance criteria 

Table 5. Validation protocol summary 

Element Specification Acceptance 

Cue 

Rigor Signal 
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Splits Grouped 

holdouts 

Leave-group-

out 

Evaluability 

Baselines LR, RF, rules, 

manual 

Compare to 

each 

Design 

transparency 

Primary 

Metrics 

Kappa, 

coverage, AUC 

AC1-AC3 

thresholds 

Evaluability 

Uncertainty BCa bootstrap 10 seeds; 2000 

resamples 

Design 

transparency 

Audits Leakage and 

QC 

Halt on failures Design 

transparency 

Results 

Predictive utility was operationalized using receiver operating characteristic area 

under the curve (AUC) for classification in the Rural Groundwater Service 

Telemetry Cohort. Equation (4) defines AUC as the integral of the true positive 

rate over the false positive rate domain. For baselines, performance is intended to 

be compared directly against logistic regression, random forest, rule-based 

monitoring, and manual logbook governance classification; quantitative 

differences are not reported here. 

Evaluability was supported through predefined grouped holdouts by entity, 

geography, and context, including external leave-group-out tests. Model selection 

was constrained by anchored nested search with embargo and train-only 

preprocessing to avoid lookahead. Uncertainty quantification used BCa bootstrap 

with 2000 resamples stratified by external group, with alpha 0.05 and FDR 

correction for bootstrap tests. A halt rule stopped analysis if the primary metric CI 

overlapped baseline by >50%. Primary outcomes, including inter_rater_kappa and 

predictive_utility_auc, are not reported here. 

 

𝐴𝑈𝐶 = ∫ 𝑟𝑇𝑃𝑅(𝑢)
1

0

 𝑑𝑢 (4) 

Discussion 

Smart groundwater service assurance depends as much on governance and 

operator capacity as on telemetry. The proposed conceptual model therefore should 

be interpreted as a decision-structuring device, not a substitute for local diagnosis. 

Regarding alternative explanations, any observed gains in predictive utility could 
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reflect improved data completeness, parallel training of operators, or selection into 

the programmatic cohort rather than the constructs themselves. Differentiating 

these mechanisms requires pre-specified grouped holdouts and consistent coding 

rules with inter-rater checks. 

Robustness of reasoning hinges on whether propositions remain credible when 

key assumptions are relaxed. Sensor dropout, sparse maintenance logs, and 

affordability constraints can all break naive monitoring rules, so the planned 

sensor-dropout stress test and runtime reporting are necessary boundary probes. 

The argument also faces edge cases, including rapid aquifer depletion or abrupt 

tariff changes, where governance variables may dominate telemetry. For such 

regimes, the framework is expected to fail, and falsification should rely on 

transparent rubric disagreements and leave-group-out generalization. 

Limitations and Future Work 

Claims about affordable IoT telemetry remain vulnerable to context shift and 

measurement error, especially when programmatic cohorts omit local 

idiosyncrasies or when transfer differs across geographies; such drift is common 

in single-site or short-duration monitoring deployments (Sugiharto et al., 2023). 

Table (6) summarizes four recurring threats, their impacts, and practical 

mitigations. Governance and equity risks are also material; decentralised 

groundwater arrangements can impose uneven participation costs and 

differentiated service quality (Subramanyam, 2024). 

Future work should translate these limitations into testable checks, including 

sensitivity ranges for site-specific factors, leave-group-out evaluation for new 

context groups, and clearer adjudication procedures when annotators disagree. 

Boundary conditions should be made explicit so recommendations are not used to 

justify unsafe WASH actions outside the intended cohort and affordability 

constraints. Low-cost monitoring perspectives also indicate that documentation 

and cost-benefit assessment remain underdeveloped and should accompany 

deployment planning (Hamel et al., 2024). 

Table 6. Limitations and mitigations 

Threat Impact Mitigation Boundary Cue 

Cohort omits 

idiosyncrasies 

Local 

mismatch risk 

Sensitivity 

ranges 

Site-specific 

factors 
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Transfer 

varies by 

geography 

Weak external 

validity 

External group 

holdouts 

New context 

groups 

Construct 

miscoding 

Lower IRR Adjudication 

protocol 

Annotator 

disagreement 

Recommendat

ions 

misapplied 

Unsafe WASH 

actions 

Misuse 

guardrails 

Out-of-scope 

use 

Conclusion 

Smart groundwater service assurance in rural settings requires decisions that 

remain consistent under sparse telemetry and uneven governance. The present 

study frames an explicit conceptual model that links affordable IoT monitoring to 

service outcomes through reliability constructs and a governance taxonomy. A 

compact coding rubric is specified to support independent classification, alongside 

a programmatic validation plan using the Rural Groundwater Service Telemetry 

Cohort and grouped holdouts by geography, entity, and context under resource and 

affordability constraints. Evaluability is maintained by defining observable 

implications, including inter-rater kappa, taxonomy coverage percent, predictive 

utility AUC, and runtime profiles, with leakage control and lineage tracking via 

hashed manifests and logged configurations. Clinical impacts are not estimated 

here. Key boundary conditions include reliance on public aggregate sources and 

applicability to community operators and district WASH engineers. Alternative 

mechanisms and competing explanations require explicit testing in future 

empirical studies to rule out confounding and local idiosyncrasies systematically. 
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